skip to main content


Search for: All records

Creators/Authors contains: "Beaugrand, Grégory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The abundance of large marine dinoflagellates has declined in the North Sea since 1958. Although hypotheses have been proposed to explain this diminution (increasing temperature and wind), the mechanisms behind this pattern have thus far remained elusive. In this article, we study the long‐term changes in dinoflagellate biomass and biodiversity in relation to hydro‐climatic conditions and circulation within the North Atlantic. Our results show that the decline in biomass has paralleled an increase in biodiversity caused by a temperature‐induced northward movement of subtropical taxa along the European shelf‐edge, and facilitated by changes in oceanic circulation (subpolar gyre contraction). However, major changes in North Atlantic hydrodynamics in the 2010s (subpolar gyre expansion and low‐salinity anomaly) stopped this movement, which triggered a biodiversity collapse in the North Sea. Further, North Sea dinoflagellate biomass remained low because of warming. Our results, therefore, reveal that regional climate warming and changes in oceanic circulation strongly influenced shifts in dinoflagellate biomass and biodiversity.

     
    more » « less
  2. Abstract Heatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm 3 indiv −1 day −1 (usual temperature) to 0 mm 3 indiv −1 day −1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles. 
    more » « less
  3. Abstract Annual plankton succession has been investigated for many decades with hypotheses ranging from abiotic to biotic mechanisms being proposed to explain these recurrent patterns. Here, using data collected by the Continuous Plankton Recorder (CPR) survey and models originating from the MacroEcological Theory on the Arrangement of Life, we investigate Annual Phytoplankton Succession (APS) in the North Sea at a species level. Our results show that this phenomenon can be predicted well by models combining photosynthetically active radiation, temperature and macro-nutrients. Our findings suggest that APS originates from the interaction between species’ ecological niches and the annual environmental fluctuations at a community level. We discuss our results in the context of traditional hypotheses formulated to explain this recurrent pattern in the marine field. 
    more » « less